Team 10B: Automatic Lego Sorting Machine

BY: ERIC PISCIOTTA AUSTIN SHORR TRISTIAN VIGUERIA

Summary

- Project Description
- Functional Model
- Black Box Model
- Design Description and BOM
- Analysis
 - Conveyor Belts
 - Motors
 - Image Recognition
- Design Requirements
- Budget
- Schedule

Project Description

To design an Automatic Lego Sorting Machine
Sort Legos by type of brick, plate, rail, and specialized pieces
Dump N' Go

Client – David Willy

Black Box Model

Functional Model

Tristian

Design Description

CAD Model

Austin

Bill of Materials

ltem #	Description	Vendor	Part Number	Quantity	Price USD	Total Spent USD
1	CanaKit Raspberry Pi 3 complete Starter Kit - 32 GB Edition	Amazon	ASIN: B07BCC8PK7	1	79.99	166.59
2	Raspberry Pi Camera Module V2-8 Megapixel, 1080p	Amazon	N/A	1	29.95	
3	Aobbmok 12V 12RPM BLDC Electric Brushless Geared DC Motor CW/CCW Dia 37mm	Amazon	1212DE- BL3625	1	24.99	
4	Aobbmok 12V 66RPM Brushless Gear Motor DC	Amazon	1266DE- BL3625	1	29.99	
5	TOOGOO(R) 626Z 6mm x 19mm x 6mm Shielded Radial Miniature Deep Groove Ball Bearing 5 Pcs	Amazon	9246	1	1.67	

Tristian

Motor Analysis

Considerations:

- Brushless motors preferred over brushed motors
- Runs on 12 VDC and >4 Amp Power
- Feedback signal desired
- Integrated Gearbox
 - Output for one motor rotates 5X faster than the other

► Torque Equation

$$T = \frac{1}{2} \left(\frac{(V * 60)}{\pi * \omega(RPM)} \right) \mu Wg$$

Conveyor Belt Analysis

Lift Release Time $Rt_{Lift} = \frac{Length}{(\frac{Step \ size}{V_{Lift}})}$

Load on Belts
 Assume 2x2 Lego = 15.8mm_{long}
 Load=mg*Long²*(Lego travel timemax (Lego travel timemax (

► Torque Load $T_L = \frac{F * D}{2 * \eta * i}$ ► Negligible TL

Austin

Image Recognition Analysis

Hardware: Raspberry PI 3 B+ with 1GB RAM

- Software: OpenCV (image detection) coupled with TensorFlow (image classification)
- Results: Imaging processing uses around 50-65% of RAM and runs at 1-1.5 fps which is enough for real time object Lego sorting.
- It is important to note that extra cameras added to the system would likely use the rest of the systems RAM unless the neural network can be optimized to reduce RAM consumption (highly unlikely)

Tristian

Design Requirements

- Easy Transportation
- Large Lego Capacity
- Intuitive Operative
- Minimum Human Interaction
- Must Not Be Made of Legos
- Robust and Safe
- Runs on Standard Wall Power
- Must Sort Large Variety of Legos

Budget

► Total Budget \$500

- Expected Spending
 - Motors and Servos \$100
 - Structure and Framework \$110
 - Conveyor belts / Mechanical Elements \$85
 - Raspberry Pi and Camera \$105
 - > Hardware \$60
 - > Miscellaneous electronics\$40
- > Already Spent
 - Motors and Servos \$52
 - Raspberry Pi and Camera \$105
 - > Hardware \$2

Schedule

On Schedule

- CAD
- Staff Meeting 7

Slightly Behind Schedule

- BOM
- Final Report
- Website Check 3

Questions?